A comparison of risk factors and other clinical characteristics between HIV-infected Nigerians with and without significant fibrosis/cirrhosis. **Oyeleke G¹**, Odeghe E¹, Odukoya O¹, Duguru M², Davwar P², Lesi O¹, Okeke E², Kocherginsky M³, Akanmu A¹, Achenbach C³, Hawkins C³, Ogunsola F¹, Murphy R³, Hou L^3 .

Affiliations: 1. University of Lagos/Lagos University Teaching Hospital, 2. University of Jos/Jos University Teaching Hospital, 3. Northwestern University.

Background

- Liver disease is a major cause of morbidity and the main cause of non-AIDS associated mortality in Persons living with HIV (PLH) in Africa, with liver fibrosis being an important risk factor.
- Early recognition and diagnosis of liver disease in PLH is important to reduce morbidity and mortality.
- Measurement of liver stiffness using Transient Elastography (TE), a non-invasive test that measures liver stiffness through pulsed echo ultrasound, is a promising alternative to liver biopsy and has high sensitivity for determining the presence of advanced liver fibrosis.¹

Objective

• To compare demographic, clinical and laboratory characteristics in PLH with and without significant liver fibrosis (TE >9.3kPa).

Methods

- HIV-infected adults >18 enrolled at Lagos University Teaching Hospital, & Jos University Teaching Hospital, Nigeria between 11/18- 2/20 in an NCI-funded study examining biomarkers associated with HIV-associated Hepatocellular Cancer (HCC) were included in this crosssectional descriptive study
- Demographic, clinical and laboratory data were compared between HIV-infected subjects with and without significant fibrosis TE (>9.3kPa).
- All analyses were conducted using R version 4.0.2.

Results

able 1: Baseline characteristics of participants				Table 3: Comparison of Co-morbidities					
ables (median,)	Overall	TE>9.3kPa	TE <u><</u> 9.3kPa	p-value	Vari	iables	Overall	TE >9.3kPA	TE <
rticipants (%)	426	72 (16.9)	354 (83.1)		Dur	ation of alcohol	15	20	15
ge in years	46	46.5	45	0.1	use	(yrs)			
Gender, male	145 (34.2)	35 (48.6)	110 (31.2)	0.01	Cur	Current alcohol use (%)	58 (13.6)	16 (22.2)	42 (11.9)
Dn ART	424 (99.5)	72 (100)	352 (99.4)	1.0	(%)				
BMI (Kg/m²)	25.2	24.7	25.3	0.35	Obe	esity (%)	11 (2.6)	2 (2.8)	9 (2.5)
IV Duration (yrs)	12.0	12.0	12.0	0.97		linidomio (0/)	9 (1 0)	1 (1 1)	7 (2 0)
Pre-ART CD4 Count	503.2	459.0	511.6	0.22	Dys	sipidemia (%)	0(1.9)	1 (1.4)	7 (2.0)
mean)					Diabetes Mellitus		12(2.8)	7 (9.7)	5 (1.4)
					(%)				

Table 2:Comparisons of laboratory parameters

Variables (median, range)	Overall	TE >9.3kPA	TE <u><</u> 9.3kPA	P- value
4LT	16 (0.7, 210)	27.9 (4, 191)	15.0 (0.7, 210)	<0.01
4ST	24 (3, 640)	38.1 (12, 168)	23.0 (3, 640)	<0.01
Platelets	235 (75, 750)	226.5 (75, 504)	236 (87, 750)	0.15
HBsAg positive (%)	50 (12.3)	12 (19)	38 (11)	0.09
HCV Antibodies (%)	43 (10.6)	15 (23.8)	28 (8.1)	0.01

ART, Anti-Retroviral theray; BMI, Body mass index; ALT, Alanine maintransferase; AST, Aspartate aminotransferase, HBsAg, Hepatitis B Surface antigen; HCV' Hepatitis C Virus.

Acknowledgements

Conclusions

• Traditional risk factors observed in other African and non-African cohorts such as viral hepatitis C, alcohol consumption and male gender² were more common among subjects with TE>9.3 kPa in this cohort.

• Surprisingly, HBsAg positivity was similar between groups, however this may likely be due to the fact that almost all of the patients were on ART. ART has been shown to result in sharp, early declines in liver fibrosis scores in HIV/HBV coinfection to levels similar to those with HIV.

• Further study is needed to examine the independent effects of active HCV infection (anti-HCV with detectable HCV viral load) and diabetes on liver disease in this population.

References

^{1.} Mialhes P, Pradat P, Chevallier M, et al. Proficiency of transient elastrography compared to liver biopsy for the assessment of fibrosis in HIV/HBV-coinfected patients. J Viral Hepat. 2011; 18:61-9.

^{2.} Hawkins C, Agbaji O, Ugoagwu P, et al. Assessment of liver fibrosis by transient elastography in patinets with HIV and hepatitis B virus coinfection in Nigeria. Cliniccal Infectious Diseases: an Official Publication of the Infectious Diseases Society of America. 2013 Dec;57(12):e189-92. DOI: 10. 1093/cid/cit564.

- Liver disease is a major cause of morbidity and the main cause of non-AIDS associated mortality in Persons living with HIV (PLH) in Africa, with liver fibrosis being an important risk factor.
- •Early recognition and diagnosis of liver disease in PLH is important to reduce morbidity and mortality.
- •Measurement of liver stiffness using Transient Elastography (TE), a non-invasive test that measures liver stiffness through pulsed echo ultrasound, is a promising alternative to liver biopsy and has high sensitivity for determining the presence of advanced liver fibrosis.¹

Background

• To compare demographic, clinical and laboratory characteristics in PLH with and without significant liver fibrosis (TE >9.3kPa).

Objective

- sectional descriptive study.
- fibrosis TE (>9.3kPa).

Method

•HIV-infected adults >18 enrolled at Lagos University Teaching Hospital, & Jos University Teaching Hospital, Nigeria between 11/18- 2/20 in an NCI-funded study examining biomarkers associated with HIV-associated Hepatocellular Cancer (HCC) were included in this cross-

•Demographic, clinical and laboratory data were compared between HIV-infected subjects with and without significant

•All analyses were conducted using R version 4.0.2.

Variables (median, IQR) **Participants (%)** Age in years Gender, male On ART BMI (Kg/m²) HIV Duration (yrs) Pre-ART CD4 Count (me

Baseline Characteristics of study participants

	Overall	TE>9.3kPa	TE <9.3kPa	p-value
	426	72 (6.9)	354 (83.1)	
	46	46.5	45	0.1
	145 (34.2)	35 (48.6)	110 (31.2)	0.01
	424 (99.5)	72 (100)	352 (99.4)	1.0
	25.2	24.7	25.3	0.35
	12.0	12.0	12.0	0.97
an)	503.2	459.0	511.6	0.22

Comparison of laboratory parameters

Variables	TE >9.3kPA	TE <9.3kPA	Overall	P- value
ALT (median [range])	27.9 [4, 191]	15.0 [0.7, 210]	16 [0.7, 210]	<0.01
AST (median [range])	38.1 [12, 168.4]	23.0 [3, 640]	24 [3, 640]	< 0.01
Platelet (median [range])	226.5 [75, 504]	236 [87, 750]	235 [75, 750]	0.15
HBsAg positive (%)	12 (19)	38 (11)	50 (12.3)	0.09
HCV Antibodies (%)	15 (23.8)	28 (8.1)	43 (10.6)	< 0.01

Comparison of co-morbidities

Variables

Duration of alcohol use

Current alcohol use (%)

Obesity (%)

Dyslipidemia (%)

Diabetes Mellitus (%)

	Overall	TE >9.3kPA	TE <9.3kPA	P-value
(yrs)	15	20	15	0.06
	58 (13.6)	16 (22.2)	42 (11.9)	0.02
	11 (2.6)	2 (2.8)	9 (2.5)	1.0
	8 (1.9)	1 (1.4)	7 (2.0)	0.9
	12(2.8)	7 (9.7)	5 (1.4)	<0.01

- cohort.
- HCV infection in liver disease.

Conclusion

•Traditional risk factors observed in other African and non-African cohorts such as viral hepatitis C, alcohol consumption and male gender² were more common in subjects with TE>9.3 kPa in this

•HBsAg positivity was similar between groups, however this may likely be due to the effects of ART which has been shown to result in sharp, early declines in liver fibrosis in HIV/HBV coinfection to levels similar to those with HIV.

•Further study is needed to examine the independent role of active

Hepat. 2011; 18:61-9.

1093/cid/cit564.

References

- 1. Mialhes P, Pradat P, Chevallier M, et al. Proficiency of transient elastrography compared to liver biopsy for the assessment of fibrosis in HIV/HBV-coinfected patients. J Viral
- 2. Hawkins C, Agbaji O, Ugoagwu P, et al. Assessment of liver fibrosis by transient elastography in patinets with HIV and hepatitis B virus coinfection in Nigeria. Cliniccal Infectious Diseases: an Official Publication of the Infectious Diseases Society of America. 2013 Dec;57(12):e189-92. DOI: 10.

Acknowledgements

Northwestern University

